INTEGRATION

Mise à jour du : 17/03/16

A) FONCTIONS EN ESCALIER, FONCTIONS CONTINUES PAR MORCEAUX On se place dans un intervalle I de $\mathbb R$

I) Continuité uniforme

<u>Définition</u>: Soient I un intervalle de R, f une fonction de I vers R. On dit que f est <u>uniformément</u>

continue sur I ssi : $\forall \varepsilon > 0$, $\exists \delta > 0 \mid \forall (x,y) \in I^2$, $|x-y| \le \delta \implies |f(x)-f(y)| \le \varepsilon$

Exercice: Montrer que si f est lipschitzienne sur I alors f est uniformément continue sur I

Théorème : Si f est uniformément continue sur I alors f est continue sur I

Dem: Soit x dans I. On a bien $\forall \varepsilon > 0$, $\exists \delta > 0 \mid \forall y \in I$, $|x-y| \le \delta \implies |f(x)-f(y)| \le \varepsilon$

Remarque: On n'a pas la réciproque. Par exemple si $I = \mathbb{R}$ et $f: x \to x^2$.

En prenant $\varepsilon = 1$, on a pour tout $\delta > 0$, si $x = \delta^{-1}$ et $y = x + \delta$, on a bien $|x-y| \le \delta$ alors que $|f(x)-f(y)| = |\delta^2 + 2| > 1$. **Théorème de Heine**

<u>Théorème</u>: Si f est continue sur le segment [a,b], alors f est uniformément continue sur [a,b] <u>Dem</u>: Non exigible...

II) Subdivision

<u>Définition</u>: On appelle **subdivision** σ de [a,b], une famille finie $\sigma = (x_0, x_1, ..., x_n)$ telle que : $a = x_0 < x_1 < x_2 < ... < x_n = b$. On appelle **pas de la subdivision** la valeur $\rho(\sigma) = \sup_{1 \le i \le n} (x_i - x_{i-1})$

Si σ et σ' sont deux subdivisions de [a,b], on dit que σ est plus fine que σ' si tous les éléments de σ' sont dans σ . En particulier si σ et σ' sont deux subdivisions de [a,b], $\sigma'' = \sigma \cup \sigma'$ est une subdivision de [a,b] plus fine que σ et σ'

III) Fonctions en escalier

<u>Définition</u>: Soit f une fonction de [a,b] vers \mathbb{R} . On dit que f est **une fonction en escalier** sssi $\exists \ \sigma = (x_0, x_1, ..., x_n) \in I^{n+1}$ (une subdivision de I), $\exists \ (\lambda_0, ..., \lambda_{n-1}) \in \mathbb{R}^n$ tels que : $\forall x \in]x_i, x_{i+1}[$, $f(x) = \lambda_i$ Une telle subdivision σ est dite **adaptée** à f (ou subordonnée à f)

Remarque: $f(x_i)$ existe mais n'est pas nécessairement un des λ_k

<u>Propriété:</u> L'ensemble $\mathscr{E}([a,b])$ des fonctions en escalier sur [a,b] à valeurs dans \mathbb{R} est une sous algèbre de $\mathscr{E}([a,b],\mathbb{R})$

Dem: On vérifie aisément les stabilités...

IV) Fonctions continues par morceaux

<u>Définition</u>: Soit f une fonction de [a,b] vers \mathbb{R} . On dit que f est **une fonction continue par morceaux sur** [a,b] sssi $\exists \sigma = (x_0, x_1, ..., x_n) \in [a,b]^{n+1}$ (une subdivision de [a,b]) telle que f soit continue sur chaque $]x_i,x_{i+1}[$ et f admet des limites finies à droite et à gauche en tout x_i (sauf à gauche de x_0 et à droite de x_n) Une telle subdivision σ est dite **adaptée à f** (ou subordonnée à f).

<u>Rem</u>: Toute subdivision plus fine qu'une subdivision adaptée à f est encore adaptée à f

<u>Propriété:</u> L'ensemble $\mathcal{C}_{pm}([a,b])$ des fonctions continues par morceaux sur [a,b] à valeurs dans \mathbb{R} est une sous algèbre de $\mathcal{F}([a,b],\mathbb{R})$

Dem: On vérifie aisément les stabilités...

Théorème : Approximation des fonctions c.p.m. par les fonctions en escalier Soit $f \in \mathcal{C}_{pm}([a,b])$. $\forall \ \epsilon > 0, \ \exists (\phi,\psi) \in (\mathscr{E}([a,b]))^2 \mid \ \phi \leq f \leq \psi \ \text{et} \ |\psi - \phi| \leq \epsilon$

<u>Dem: Hors Programme</u> En travaillant sur chaque intervalle sur lequel f est continue, on peut supposer que f est continue sur]a,b[et admet des limites finies en a et b.

On considère g le prolongement continu sur [a,b] de $f_{|]a,b[}$. g est continu sur [a,b] donc d'après le théorème de Heine, g est uniformément continue. Soit $\varepsilon>0$. $\exists \ \delta>0 \ |\ \forall (x,y)\in [a,b]^2, \ |x-y|\le \delta \Rightarrow |g(x)-g(y)|\le \varepsilon$. Aussi, $\ \forall (x,y)\in [a,b]^2, \ |x-y|\le \delta \Rightarrow |f(x)-f(y)|\le \varepsilon$ (*) Soit $p\in \mathbb{N}^*$ $|\ \frac{b-a}{p}\le \delta$ et soit la subdivision $(x_0,x_1,...,x_p)$ où $x_k=a+\frac{b-a}{p}$ k

Soit ϕ et Ψ définies sur [a,b] par : $\forall k \in \{0,..,p\}$, $\phi(x_k) = f(x_k) = \psi(x_k)$ et si $x \in]x_k,x_{k+1}[$, $\phi(x) = \inf_{b \in x_k, d} f$ et $\psi(x) = \sup_{b \in x_k, d} f$

D'après la relation (*), on a : $\forall x \in [a,b] \setminus \{x_0,...,x_p\}$, $|\phi(x) - \psi(x)| \le \varepsilon$ De plus on a bien , $\forall x \in \{x_0,x_1,...,x_p\}$, $|\phi(x) - \psi(x)| \le \varepsilon$ Enfin, on a $\forall x \in [a,b]$, $\phi(x) \le f(x) \le \psi(x)$ et $(\phi,\psi) \in (E([a,b]))^2$. CQFD

<u>Définition</u>: Soit f une fonction de I vers \mathbb{R} . On dit que f est une fonction continue par morceaux sur I sssi sa restriction à tout segment inclus dans I est continue par morceaux

B) INTEGRALES DES FONCTIONS CONTINUES PAR MORCEAUX

On se place dans le segment I = [a,b] de \mathbb{R} avec a < b

I) Intégrale des fonctions en escalier Ce paragraphe est informatif et n'est pas exigible Soit f une fonction en escalier sur [a,b]. Soit $\sigma = (x_0, x_1, ..., x_n)$ une subdivision adaptée à f et

$$(\lambda_0,...,\lambda_{n-1}) \in \mathbb{R}^n \text{ tels que}: \ \forall x \in]x_i,x_{i+1}[,\ f(x)=\lambda_i \ . \ \text{On note } I(\sigma) \text{ le nombre } I(\sigma) = \sum_{i=0}^{n-1} (x_{i+1}-x_i)\lambda_i$$

Mise à jour du : 17/03/16

<u>Propriété:</u> Le nombre $I(\sigma)$ ne dépend pas de la subdivision σ adaptée à f

Dem: Soit σ et σ' deux subdivisions adaptées à f. Soit $\sigma'' = \sigma \cup \sigma'$ la subdivision obtenue en prenant tous les éléments apparaissant dans l'une des subdivisions σ et σ '. C'est une subdivision de [a,b] adaptée à f On a alors $I(\sigma'') = I(\sigma)$ et $I(\sigma'') = I(\sigma')$.

<u>Définition</u>: Cette valeur commune à toute subdivision σ de $I(\sigma)$ est appelée **intégrale de f** sur [a,b] et on la note : $\int_{[a,b]} f = \int_a^b f = \int_a^b f(t)dt$

Propriété: L'application $\theta: E([a,b]) \to \mathbb{R}, \ f \mapsto \int_{[a,b]} f \ \text{est une forme linéaire}$

<u>Dem:</u> Soit $(f,g) \in (E([a,b]))^2$ et $(\alpha,\beta) \in \mathbb{R}^2$. Soit σ_1 une subdivision adaptée à f et σ_2 une subdivision adaptée à g. Soit $\sigma = \sigma_1 \cup \sigma_2 = (x_0, x_1, ..., x_n)$; c'est une subdivision adaptée à f et à g. On note λ_k et γ_k les valeurs prises par f et g sur $]x_k$, $x_{k+1}[. \sigma \text{ est une subdivision adaptée à } \alpha f + \beta g, \text{ et la valeur prise par } \alpha f + \beta g \text{ sur }]x_k, x_{k+1}[\text{ est } \alpha \lambda_k + \beta \gamma_k]$ On a

$$\int_{[a,b]} (\alpha f + \beta g) = \sum_{i=0}^{n-1} (x_{i+1} - x_i)(\alpha \lambda_i + \beta \gamma_i) = \alpha \sum_{i=0}^{n-1} (x_{i+1} - x_i)\lambda_i + \beta \sum_{i=0}^{n-1} (x_{i+1} - x_i)\gamma_i = \alpha \int_{[a,b]} f + \beta \int_{[a,b]} g \ . \quad \text{Ainsi θ est une forme linéaire}$$

Propriété: Soit
$$f \in E([a,b])$$
. Soit $c \in]a,b[$. Alors $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$

Dem: Soit σ une subdivision adaptée à f. Soit σ ' la subdivision obtenue en ajoutant à σ le point c (s'il ne figurait pas dans σ). $\sigma'=\ (x_0,\,x_1,\!...,\!x_p\!\!=\!\!c,\,x_{p+1},\!...,\!x_n)$, on note λ_k la valeur prise par f sur $]x_k,\,x_{k+1}[$

Comme f est en escalier, les restrictions de f à [a,c] et à [c,b] le sont aussi (on les note encore f), des subdivisions adaptées étant (x₀,

Propriété: Soit $f \in E([a,b])$ positive . Alors : $\int_{[a,b]} f \ge 0$

<u>Dem:</u> Soit $\sigma = (x_0, x_1,...,x_n)$ adaptée à f . Soit λ_k la valeur prise par f sur $]x_k, x_{k+1}[$.

$$\forall k \in \{0,..,\text{n--}1\}, \, \lambda_k \geq 0. \,\, D'o\grave{u} \, \sum_{i\,=\,0}^{n-1} (x_{i+1} - x_i) \lambda_i \geq 0 \quad i.e. \quad \int_{[a,b]} f \, \geq 0$$

Corollaire: Soit $(f,g) \in (E([a,b]))^2$ avec $f \le g$. Alors $\int_{[a,b]} f \le \int_{[a,b]} g$

Dem: On travaille avec g - f.

Intégrale des fonctions continues par morceaux II)

a) Définition

Soit $f \in C_{pm}([a,b])$. Soit $\sigma = (x_0, x_1,...,x_n)$ une subdivision adaptée à f. f est bornée sur chaque $]x_i,x_{i+1}[$ car prolongeable en une fonction continue sur $[x_i,x_{i+1}]$. Ainsi f est bornée sur [a,b].

On suppose que l'on a : $\exists (N,M) \in \mathbb{R}^2 \mid N \le f \le M$. On considère alors les deux ensembles suivants :

$$A = \left\{ \begin{array}{l} \int_a^b \phi \mid \phi \in E([a,b]), \, \phi \leq f \end{array} \right\} \ \ \text{et} \ \ B = \left\{ \begin{array}{l} \int_a^b \theta \mid \theta \in E([a,b]), \, f \leq \theta \end{array} \right\}$$

Comme on a $f \le M$, l'ensemble A est majoré par M(b-a) de plus il contient N(b-a) car la fonction constante égale à N est une fonction en escalier inférieure à f.

De même, B est minoré (par N(b-a)) et contient M(b-a).

Ainsi A possède une borne supérieure ν et B possède une borne inférieure μ.

De plus si ϕ et θ sont dans E([a,b]) avec $\phi \leq f \leq \theta$ alors, par croissance de l'intégration, $\int_a^b \phi \leq \int_a^b \theta$. En particulier

 $\forall (x,y) \in A \times B, x \leq y. \text{ Aussi } v \leq \mu.$

$$De \ plus: \ \forall \epsilon >0, \ \exists (\phi,\theta) \in \left(\ E([a,b]) \right)^2 \mid \ \ \phi \leq f \leq \theta \ \ et \ \ \theta - \phi \leq \frac{\epsilon}{b-a}$$

On a alors
$$\int_a^b \phi \in A$$
, $\int_a^b \theta \in B$ et $\int_a^b \theta - \int_a^b \phi \le \epsilon$. Aussi $\nu \ge \mu$ i.e. $\nu = \mu$

b) Propriétés générales

L'idée de ce chapitre est de prolonger les propriétés valables pour les fonctions en escalier aux fonctions continues par morceaux.

Mise à jour du : 17/03/16

<u>Propriété:</u> L'application $\theta: C_{pm}([a,b]) \to \mathbb{R}, \ f \mapsto \int_{[a,b]} f \text{ est une forme linéaire}$

 $\underline{\textbf{Dem:}} \ \ \textbf{$\boldsymbol{\vee}$ Soit } (f_1,f_2) \in (C_{pm}([a,b]))^2 \text{ . Soit } (\phi_k,\theta_k) \in (E([a,b]))^2 \mid \ \phi_k \leq f_k \leq \theta_k.$

On a $\,\phi_1+\phi_2$ et $\theta_1+\theta_2$ en escalier et : $\,\phi_1+\phi_2\leq f_1+f_2\leq\theta_1+\theta_2$.

Aussi par définition de l'intégrale de
$$f_1+f_2$$
 sur $[a,b]$, on a :
$$\int_{[a,b]} (\phi_1+\phi_2) \leq \int_{[a,b]} (f_1+f_2) \leq \int_{[a,b]} (\theta_1+\theta_2) \quad \Leftrightarrow \int_{[a,b]} \phi_1 + \int_{[a,b]} \phi_2 \leq \int_{[a,b]} (f_1+f_2) \leq \int_{[a,b]} \theta_1 + \int_{[a,b]} \theta_2 \quad (\text{linéarité sur E}([a,b])).$$
 En passant à la borne supérieure sur ϕ_1 et ϕ_2 on a:
$$\int_{[a,b]} f_1 + \int_{[a,b]} f_2 \leq \int_{[a,b]} (f_1+f_2)$$

De même en passant à la borne inférieure sur
$$\theta_1$$
 et θ_2 , on obtient :
$$\int_{[a,b]} (f_1+f_2) \leq \int_{[a,b]} f_1 + \int_{[a,b]} f_2 \ . \ Ainsi: \int_{[a,b]} (f_1+f_2) = \int_{[a,b]} f_1 + \int_{[a,b]} f_2$$

 $\Psi \ \, \text{Soit} \, f \in C_{pm}([a,b]) \, \, . \, \, \text{Soit} \, \, \alpha \in \mathbb{R}. \, \, \text{Soit} \, \, (\phi,\theta) \in \left(\, E([a,b]) \right)^2 \, | \ \, \phi \leq f \leq \theta.$

 $\int_{[a,b]} \alpha \ \theta \ \text{ c'est à dire } \ \alpha \int_{[a,b]} \phi \leq \int_{[a,b]} \alpha \ f \leq \alpha \int_{[a,b]} \theta \ .$ En passant à la borne supérieure sur ϕ et à la borne inférieure pour θ , on a $\alpha \int_{[a,b]} f \leq \int_{[a,b]} \alpha \ f \leq \alpha \int_{[a,b]} f \ \text{ i.e. } \int_{[a,b]} \alpha \ f = \alpha \int_{[a,b]} f$ $\bullet \quad \text{Si } \alpha < 0 \ .$ Il suffit de travailler avec $\alpha = -1$. Or ϕ en escalier minore (majore) f ssi $-\phi$ en escalier majore (minore) -f. Ainsi $\int_{[a,b]} -f = -\int_{[a,b]} f$ • Si $\alpha \ge 0$. On a $\alpha \varphi$ et $\alpha \theta$ en escalier et : $\alpha \varphi \le \alpha f \le \alpha \theta$. Aussi par définition de l'intégrale de αf , on a : $\int \alpha \varphi \le \int \alpha f \le \alpha f$

$$\alpha \int_{[a,b]} f \leq \int_{[a,b]} \alpha f \leq \alpha \int_{[a,b]} f \quad i.e. \int_{[a,b]} \alpha f = \alpha \int_{[a,b]} f$$

Rem: Au lieu d'utiliser des passages aux bornes supérieures ou inférieures, on pourrait aussi utiliser l'approximation des fonctions continues par morceaux par les fonctions en escalier, en constatant que si f est continue par morceaux pour tout $n \in \mathbb{N}^*$, il existe deux fonctions en escalier φ et θ encadrant f et dont la différence est majorée par $\frac{1}{n}$

Propriété: Soit $f \in C_{pm}([a,b])$. Soit $c \in]a,b[$. Alors $\int_{[a,b]} f = \int_{[a,c]} f + \int_{[c,b]} f$

correspondante pour les fonctions en escalier, on a: $\int_{[a,b]} \phi \le \int_{[a,c]} f_1 + \int_{[c,b]} f_2$.

 $Aussi \ \int_{f_{a,cl}} f_1 + \int_{f_{c,bl}} f_2 \ majore \ l'ensemble \ \left\{ \ \int_a^b \phi \ | \ \phi \in E([a,b]), \ \phi \leq f \ \right\} \quad d'où \ \int_{[a,b]} f \ \leq \ \int_{[a,c]} f_1 + \int_{[c,b]} f_2 \ majore \ l'ensemble \ \left\{ \ \int_a^b \phi \ | \ \phi \in E([a,b]), \ \phi \leq f \ \right\}$

 $\text{De même on montre que } \int_{_{[a,c]}} f_1 + \int_{_{[c,b]}} f_2 \text{ minore } \left\{ \begin{array}{l} \int_a^b \theta \mid \theta \! \in \! E([a,b]), \, f \! \leq \! \theta \end{array} \right\}$

Ainsi on a bien $\int_{[a,b]} f = \int_{[a,c]}^{[a,c]} f_1 + \int_{[c,b]}^{[c,b]} f_2 = \int_{[a,c]} f + \int_{[c,b]} f$ en notant de la même façon f et ses restrictions.

Convention On pose
$$\int_{\alpha}^{\beta} f = -\int_{\beta}^{\alpha} f \operatorname{si} \alpha > \beta \operatorname{et} \quad \int_{\alpha}^{\beta} f = 0 \operatorname{si} \alpha = \beta$$

Corollaire: Relation de Chasles Soit f continue par morceaux sur un segment I. Soit $(a,b,c) \in I^3$. Alors $\int_a^b f = \int_a^c f + \int_c^b f$

<u>Dem:</u> On considère les différents cas suivant les positions respectives de a, b et c et on utilise la propriété et les conventions précédentes.

<u>Propriété:</u> 1) Soit $f \in C_{pm}([a,b])$, $f \ge 0$. Alors $\int_{[a,b]} f \ge 0$

2) Si, de plus f est continue sur [a,b], alors : $f = 0 \Leftrightarrow \int_{[a,b]} f = 0$

<u>Dem:</u> 1) La fonction nulle est une fonction en escalier inférieure à f donc on a : $\int_{f_0 \to 1} f \ge 0$

2) * Si f = 0 on a bien
$$\int_{[a,b]} f = 0$$

** Si f $\neq 0$. Comme f est continue sur [a,b], $\exists c \in]a,b[\mid f(c) \neq 0$. Comme f est positive alors f(c) > 0. Comme f est continue en c, on a : $\exists \delta > 0 \mid \forall x \in [a,b], |x-c| \le \delta \Rightarrow f(x) \ge \frac{f(c)}{2}$

Soit alors $\alpha = \inf(\delta, c-a, b-c)$. On a: $\alpha > 0$, $[c-\alpha, c+\alpha] \subset [a,b]$ et $\forall x \in [c-\alpha, c+\alpha]$, $f(x) \ge \frac{f(c)}{2}$

Soit alors la fonction en escalier ϕ sur [a,b], qui vaut $\frac{f(c)}{2}$ sur [c- α , c+ α] et 0 sur le reste de [a,b]. On a alors $\phi \le f$ donc par $\text{d\'efinition de } \int_{[a,b]} f, \text{ on a } \int_{[a,b]} \phi \leq \int_{[a,b]} f \text{ i.e. } \alpha f(c) \leq \int_{[a,b]} f. \text{ Ainsi } \int_{[a,b]} f > 0.$

Corollaire: 1) Soit $(f,g) \in (C_{pm}([a,b]))^2$ avec $f \leq g$. Alors $\int_{[a,b]} f \leq \int_{[a,b]} g$

2) Soit
$$f \in C_{pm}([a,\!b]).$$
 Alors $\Big|\int_{[a,\!b]} f \,\Big| \leq \int_{[a,\!b]} \Big| \, f \,\Big|$

3) Soit
$$f \in C_{pm}([a,b])$$
 . Alors : $\left| \int_{[a,b]} f \right| \le (b-a) \sup_{[a,b]} |f|$

<u>Dem:</u> 1) On travaille avec g - f. 2) On applique le 1) en constatant $-|f| \le f \le |f|$ 3) On écrit $|f| \le \sup |f|$

Mise à jour du : 17/03/16

<u>Définition</u>: Soit $f \in C_{pm}([a,b])$. On appelle $\frac{1}{b-a} \int_{[a,b]} f$ la valeur moyenne de f sur [a,b]

III) Sommes de Riemann

On appelle somme de Riemann (à gauche) associée à f et à σ , la somme $R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + \frac{b-a}{n}k\right)$

De même on parle de somme de Riemann à droite $S_n(f) = \frac{b-a}{n} \sum_{k=-1}^{n} f\left(a + \frac{b-a}{n}k\right)$

Théorème: "Les sommes de Riemann convergent vers l'intégrale de f'

Soit
$$f \in C_{pm}([a,b])$$
. Alors $\lim_{n \to +\infty} R_n(f) = \int_{[a,b]} f$ (De même pour $S_n(f)$)

<u>Dem:</u> Le programme limite la démonstration au cas des fonctions de classe \mathcal{C}^1

Soit $f \in \mathcal{C}^1([a,b])$. |f '| étant continue sur le segment [a,b], |f '| est majorée et donc d'après IAF, f est lipschitzienne. Soit M_1 un rapport de Lipschitz de f.

Pour tout k entier dans [0,n], on pose $a_k = a + k \frac{b-a}{n}$.

 $\forall x \in [a_k, \, a_{k+1}], \ |f(x) - f(a_k)| \leqslant M_1 \; (x - a_k) \quad \text{et} \ |f(x) - f(a_{k+1})| \leqslant M_1 \; (a_{k+1} - x)$

Ainsi en intégrant entre a_k et a_{k+1} , on obtient :

$$\left| \int_{[a_k, a_{k+1}]} f - \frac{b - a}{n} f(a_k) \right| \leqslant M_1 \frac{(b - a)^2}{2 n^2} \text{ et } \left| \int_{[a_k, a_{k+1}]} f - \frac{b - a}{n} f(a_{k+1}) \right| \leqslant M_1 \frac{(b - a)^2}{2 n^2}$$

Ces inégalités étant réalisées pour tout entier k de [0, n-1], on obtient en sommant :

$$\left| \int_{[a,b]} f - R_n(f) \right| \leqslant M_1 \frac{(b-a)^2}{2 n} \quad et \quad \left| \int_{[a,b]} f - S_n(f) \right| \leqslant M_1 \frac{(b-a)^2}{2 n}$$

Remarque : Démonstration dans le cas f continue :

Soit ε>0. f est continue sur le segment [a,b], donc d'après le théorème de Heine, f est uniformément continue sur [a,b].

Aussi
$$\exists \delta > 0 \mid \forall (x,y) \in [a,b]^2, |x-y| \le \delta \Rightarrow \mid f(x) - f(y) \mid \le \frac{\epsilon}{b-a}$$

Soit alors $\sigma=(a_0,\,a_1,\,..,\,a_n)\,$ une subdivision de pas constant avec $\,\frac{b-a}{n}\leq\delta\,$.

On a $\int_{[a,b]} f = \sum_{k=0}^{n-1} \int_{[a_k,a_{k+1}]} f$ d'après la relation de Chasles. D'où:

$$\left| \int_{[a,b]} f - R_n(f) \right| \leq \sum_{k=0}^{n-1} \left| \int_{[a_k,a_{k+1}]} f - (a_{k+1} - a_k) f \binom{a}{k} \right| \leq \sum_{k=0}^{n-1} \int_{[a_k,a_{k+1}]} \left| f - f \binom{a}{k} \right| \leq \sum_{k=0}^{n-1} (a_{k+1} - a_k) \frac{\epsilon}{b-a} = \epsilon$$

$$D'o\grave{u}\lim_{n\to +\infty}R_n(f)=\int_{[a,b]}f\ .\ D'autre\ part \quad \lim_{n\to +\infty}\left(\ R_n(f)-S_n(f)\ \right)=0\ D'o\grave{u}\ le\ r\acute{e}sultat\ sur\ S_n(f)$$

C) INTEGRATION ET DERIVATION

<u>I)</u> Primitives

<u>Définition</u>: Soit f continue sur un intervalle I à valeurs réelles. On appelle **primitive** de f, toute fonction F dérivable sur I telle que : $\forall x \in I$, F'(x) = f(x)

Mise à jour du : 17/03/16

<u>Remarque:</u> Si f est simplement continue par morceaux, on ne peut pas étendre sans changement la notion de primitive

Exemple: La fonction f définie sur [0,2] par $f = \mathbb{1}_{[0,1]}$ ne peut pas admettre de primitive (dérivabilité en 1...)

Propriété: Deux primitives d'une même fonction continue diffèrent d'une constante.

<u>Dem:</u> Soit F et G deux primitives de la fonction f continue sur I. Alors F - G est dérivable sur l'intervalle I et sa dérivée est nulle. Ainsi F - G est une constante.

Théorème fondamental : Soit f une fonction continue sur l'intervalle I et a∈I.

Soit F la fonction : I $\rightarrow \mathbb{R}$, $x \rightarrow \int_a^x f(t) dt$. Alors F est l'unique primitive de f qui s'annule en a

 $\underline{\textbf{Dem}:} \quad \text{Soit } x_0 \in I. \ \, \text{Soit } \ \, \epsilon > 0. \ \, \text{f est continue en } x_0 \, \text{donc} \, \, \exists \, \, h > 0 \, | \, \, \forall x \in I, \, \, |x - x_0| \leq h \Longrightarrow |f(x) - f(x_0)| \leq \epsilon \, |$

$$\overline{ \text{On a alors }} \left| \int_a^x f\left(t\right) \, dt - \int_a^x f\left(x_0\right) \, dt - \int_a^{x_0} f\left(t\right) \, dt + \int_a^{x_0} f\left(x_0\right) \, dt \right| \leq \epsilon \; .$$

$$D'où \left| F(x) - F\left(x_0\right) - \left(x - x_0\right) f\left(x_0\right) \right| \\ \leq \epsilon \left| x - x_0 \right| \quad \text{Ainsi F est d\'erivable en } x_0 \text{ et } F'(x_0) = f(x_0)$$

Ainsi F est une primitive de f sur I.

De plus elle s'annule en a et c'est la seule primitive de f qui s'annule en a (car deux primitives d'une même fonction diffèrent d'une constante)

Théorème : Soit f une fonction continue sur l'intervalle I et a ∈ I.

Soit H une primitive de f sur I. Alors:
$$\forall x \in I$$
, $\int_a^x f(t) dt = H(x) - H(a)$

<u>Dem:</u> On reprend la fonction F primitive de f s'annulant en a. Comme F et H sont deux primitives de la même fonction f, il existe une constante λ telle que $F-H=\lambda$. Ainsi, $\forall \ x \in I, F(x)-F(a)=H(x)-H(a)$.

Aussi, comme
$$F(a) = 0$$
, on $a \forall x \in I$, $H(x) - H(a) = F(x) = \int_{a}^{x} f(t) dt$

Notation
$$\int_{a}^{x} f(t) dt = H(x) - H(a)$$
 est noté : $[H(t)]_{a}^{x}$

Corollaire: Soit
$$f \in \mathcal{C}^1(I)$$
 et $a \in I$. Alors: $\forall x \in I$, $f(x) - f(a) = \int_a^x f'(t) dt$

II) Calcul de primitives

a) Intégration par parties

<u>Théorème</u>: Soient f et g deux fonctions de classe C 1 sur [a,b]. Alors on a :

$$\int_{a}^{b} f'(t) g(t) dt = \left[f(t) g(t) \right]_{a}^{b} - \int_{a}^{b} f(t) g'(t) dt$$

<u>Dem:</u> Soit h = fg. h est de classe \mathcal{C}^1 sur [a,b] et sa dérivée vérifie : $\forall t \in I$, h'(t) = f'(t) g(t) + f(t) g'(t).

Ainsi, puisque
$$\int_a^b h'(t) dt = [h(t)]_a^b$$
, on a bien le résultat annoncé

Exemple: Une primitive de arctan sur \mathbb{R} , est la fonction $t \to t$ Arctan $(t) - \frac{1}{2} \ln(1 + t^2)$

Théorème Formule de Taylor avec reste intégral: Si f est de classe C $^{n+1}$ sur I et si $a \in I$, $\forall x$

$$\in I$$
, $f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_{a}^{x} \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$

<u>Dem:</u> On raisonne par récurrence sur n et on applique le résultat sur l'intégration par parties

Remarque. Si on pose
$$t = a + (x-a)u$$
, on obtient $\int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt = (x-a)^{n+1} \int_0^1 \frac{(1-u)^n}{n!} f^{(n+1)}(a+u(x-a)) du$

 $\underline{\text{Th\'eor\`eme In\'egalit\'e de Taylor - Lagrange:}} \quad \text{Soit a } \in \text{I. Si} \ \ f \ \ \text{est de classe } C^{n+1} \ \ \text{sur I avec} \ \ \forall t \in \text{I, } |f^{(n+1)}(t)| \leq M,$

Mise à jour du : 17/03/16

alors
$$\forall x \in I$$
, $\left| f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) \right| \le \left| \frac{(x-a)^{n+1}}{(n+1)!} \right| M$

Dem: On applique la formule de Taylor avec reste intégral

Formule de Taylor - Young

Théorème: Formule de Taylor – Young Si f est de classe C n sur I, alors f admet un DL à

l'ordre n en tout point a de I. Plus précisément :
$$f(a + t) = \sum_{k=0}^{n} \frac{t^k}{k!} f^{(k)}(a) + o(t^n)$$

Dem: Déjà vu

b) Changement de variables

Théorème: Soit f une fonction continue sur un intervalle I.

Soit φ une fonction de classe C ¹ sur un segment $[\alpha,\beta]$ telle que $\varphi([\alpha,\beta]) \subset I$

Alors:
$$\int_{\phi(\alpha)}^{\phi(\beta)} f(u) du = \int_{\alpha}^{\beta} (f \circ \phi)(t) \phi'(t) dt$$

<u>Dem:</u> fo ϕ et ϕ ' sont continues sur $[\alpha,\beta]$. On note alors K la primitive de ϕ ' \times fo ϕ s'annulant en α .

D'autre part, on pose F la primitive de f s'annulant en $\phi(\alpha)$ et on note $H = Fo\phi$

On a
$$\forall x \in [\alpha, \beta]$$
, $K(x) = \int_{\alpha}^{x} (f \circ \phi)(t) \phi'(t) dt$ et $H(x) = \int_{\phi(\alpha)}^{\phi(x)} f(u) du$

K et H sont dérivables de dérivées respectives : $H' = \phi' \times F' \circ \phi = \phi' \times f \circ \phi$ et $K' = \phi' \times f \circ \phi$ Ainsi , sur l'intervalle $[\alpha,\beta]$, H et K différent d'une constante. Or $H(\alpha) = 0 = K(\alpha)$. Donc H = K.

En particulier
$$H(\beta)=K(\beta)$$
 i.e.
$$\int_{\phi(\alpha)}^{\phi(\beta)} f(u) \ du = \int_{\alpha}^{\beta} (f \circ \phi)(t) \ \phi'(t) \ dt$$

<u>Pratique:</u> On veut calculer $\int_a^b f(u) du$. On cherche une fonction ϕ de classe C^1 et deux réels α et β tels

que
$$a = \varphi(\alpha)$$
 et $b = \varphi(\beta)$. On remplace alors

* les bornes : a par α et b par β * la variable u par $\phi(t)$ * l'élément différentiel du par $\phi'(t)$ dt

Exemple 1: On veut calculer $\int_0^a \frac{dx}{ch(x)}$. On pose $t = e^x \iff x = ln(t)$. On a $dx = \frac{dt}{t}$ et donc :

$$\int_0^a \frac{dx}{ch(x)} = \int_0^{e^a} \frac{2 dt}{1+t^2} = 2 \arctan(e^a) - \frac{\pi}{2} \quad \underline{\mathbf{Rem}} : \text{On a } 2 \arctan(e^a) - \frac{\pi}{2} = \arctan(\sinh(a))$$

Exemple 2: On yeur calcular
$$\int_0^a \frac{dx}{\cos(x)}$$
 On pose $x = 2 \arctan(t)$ On a $dx = \frac{2 dt}{1 + t^2}$ et $\cos(x) = \frac{1 - t^2}{1 + t^2}$

On a alors :
$$\int_0^a \frac{dx}{\cos(x)} = \int_0^{\tan\left(\frac{a}{2}\right)} \frac{2 dt}{1-t^2} = \int_0^{\tan\left(\frac{a}{2}\right)} \left(\frac{1}{1-t} + \frac{1}{1+t}\right) dt = \ln\left|\frac{1+\tan\left(\frac{a}{2}\right)}{1-\tan\left(\frac{a}{2}\right)}\right| = \ln\left|\tan\left(\frac{\pi}{4} + \frac{a}{2}\right)\right|$$

Mise à jour du : 17/03/16

Quelques méthodes "importantes"

Quelques méthodes "importantes"		
Reconnaissance de primitives usuelles	$\frac{\mathbf{u}'}{\mathbf{u}}, \frac{\mathbf{u}'}{1+\mathbf{u}^2}, \mathbf{u}' \mathbf{u} \dots$	$ \mathbf{ln} \mathbf{u} $, $\arctan(\mathbf{u})$, $\frac{1}{2}$, \mathbf{u}^2
	Linéarisation des polynômes trigonométriques	
Intégration par parties	Produit d'une fonction de primitive simple et d'une fonction à dérivée rationnelle	R(t) * ln(g(t)), $R(t) * arctan(g(t))$ avec R et g deux fractions On intégrera la fraction R et dérivera le ln ou arctan
	Produit d'une exponentielle (ou cos ou sin) et d'un polynôme	On dérivera le polynôme et intégrera l'autre fonction
	Produit d'une exponentielle et d'un cosinus (ou d'un sinus)	On intègre deux fois par parties
	Intégrale dépendant d'un paramètre entier n	On essaie d'obtenir une relation de récurrence entre $\underline{I_n}$ et $\underline{I_{n-1}}$ ou $\underline{I_{n-2}}$ (Type Wallis)
Changements de	Fractions rationnelles:	Le polynôme ne pose pas de problème.
variables	Après une DES on obtient : un polynôme ,	$\frac{A}{(X-a)^q}$ non plus : si q=1 on obtiendra un logarithme et sinon
	des éléments de la forme $\frac{A}{(X-a)^q}$	on obtiendra une fraction. $\int \mathbf{x} = \mathbf{A} \mathbf{t} + \mathbf{R}$
	et $\frac{AX + B}{(X^2 + 2mX + n)^q}$ où $m^2 - n < 0$	Reste à intégrer : $\int_{\alpha}^{x} \frac{At + B}{(t^2 + 2mt + n)^q} dt : \text{on pose } u = m + t$
	$(X^2 + 2mX + n)^2$	$\int_{\alpha}^{x} \frac{At + B}{(t^2 + 2mt + n)^q} dt = \int_{\alpha + m}^{x + m} \frac{Au + B - m}{(u^2 + a^2)^q} du \text{où } a^2 = n - m^2$
		Les termes en $\frac{Au}{(u^2 + a^2)^q}$ s'intègrent aisément.
		Les termes en $\frac{B-m}{(u^2+a^2)^q}$ sont intégrés par récurrence sur q,
		sachant que pour $q = 1$ on obtient une arctan
Pour information	Fractions rationnelles en cos(t), sin(t), tan(t)	Cas général : on pose $u = tan(\frac{t}{2})$ et on obtient :
		$\cos(t) = \frac{1 - u^2}{1 + u^2} \sin(t) = \frac{2 u}{1 + u^2}, \tan(t) = \frac{2 u}{1 - u^2} \text{ et } dt = \frac{2 du}{1 + u^2}$
		Règle de Bioche: Pour trouver une primitive de
		$f(t) = R(\cos t, \sin t, \tan t)$ où R est une fraction rationnelle, on
		fait les changements de variables suivants: - Si f (-t) = - f (t) on pose u = cos t
		- Si $f(\pi - t) = -f(t)$ on pose $u = \sin t$
		- Si $f(\pi + t) = f(t)$ on pose $u = \tan t$
	Fractions rationnelles en ch(t),	Cas général : on pose $\mathbf{u} = \mathbf{e}^{\mathbf{t}}$
	sh(t), $th(t)$	Règle de Bioche : On regarde la fraction en cos(t), sin(t) et
		tan(t) correspondante et on fait le changement u = cht là où on aurait fait le changement u = cost,
		u = cht i a ou on autant fait ie changement u = cost, u = sht pour u = sint et $u = tht pour u = tant.$